Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Карякин Андмийникстерство науки и высшего образования российской федерации

Должность: Руководитель НТИ НИЯУ МИФИ Дата подписания: 20.02.2023 07:40.03 подписания: 20.02.

Уникальный программный ключ:

высшего образования

2e905c9a64921ebc9b6e02a1d35ea145f7838874 «Напиональный исследовательский ядерный университет «МИФИ» (НИЯУ МИФИ)

НОВОУРАЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ

УТВЕРЖДЕНА Ученым советом НТИ НИЯУ МИФИ Протокол № 4 от 30.08.2021 г.

Рабочая программа учебной дисциплины «3D-моделирование»

Направление подготовки	15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств
Профиль подготовки	Разработка оборудования для аддитивных технологий
Квалификация (степень) выпускника	Бакалавр
Форма обучения	Очная

Форма обучения	Очная
Курс	3
Семестр	6
Трудоёмкость дисциплины, ЗЕТ	3 3ET
Трудоёмкость дисциплины, час	108 часа
Аудиторные занятия, в том числе:	64 часа
лекции	8 часов
лабораторные работы	48 часов
курсовая работа	8 часов
Самостоятельная работа (включая время на подготовку к экзамену)	17 часов
Контроль	27
Форма итогового контроля	Экзамен,
Индекс дисциплины в Рабочем учебном плане (РУП)	Б1.В.01.05

Содержание

1. Цели освоения учебной дисциплины4
2. Место учебной дисциплины в структуре образовательной программы4
3. Планируемые результаты обучения по учебной дисциплине и их соотношение с
планируемыми результатами освоения образовательной программы5
4. Структура и содержание учебной дисциплины5
5. Информационно-образовательные технологии9
6. Курсовое проектирование
7. Средства для контроля и оценки
7. Учебно-методическое и информационное обеспечение учебной дисциплины11
8. Материально-техническое обеспечение учебной дисциплины
Приложение 1. Перечень учебно-методического обеспечения самостоятельной работы
студентов
Приложение 2. Методические указания для студентов по освоению дисциплины15
Лополнения и изменения к рабочей программе:

Рабочая программа составлена в соответствии с Образовательным стандартом высшего образования Национального исследовательского ядерного университета «МИФИ», утвержденным 07.11.2013 г. (протокол №13/07 от 27.12.2013 г.) с изменениями и дополнениями, утверждёнными Ученым советом университета (протокол № 15/04 от 02.06.2015 г.), по подготовке выпускников (квалификация «бакалавр»), и рабочим учебным планом (РУП) по направлению подготовки 15.03.05 «Конструкторско-технологическое обеспечение машиностроительных производств», профилю «Разработка оборудования для аддитивных технологий».

1. Цели освоения учебной дисциплины

Глобальной целью преподавания данной дисциплины является формирование у студентов необходимых знаний, умений и навыков применения САD-систем для твердотельного параметрического моделирования и разработки управляющих программ в рамках решения комплекса задач, связанных с разработкой эскизных, технических и рабочих проектов изделий машиностроения и технологических процессов их изготовления.

2. Место учебной дисциплины в структуре образовательной программы

Данная учебная дисциплина входит в вариативную часть профессионального модуля и связана с реализацией профиля «Разработка оборудования для аддитивных производств». Необходимость изучения дисциплины вызвана тем, что в настоящее время на производстве широко применяются САD-системы различного уровня.

Изучение дисциплины «ЗD-моделирование», направлено на понимание специфики создания ЗD-моделей и управляющих программ на их основе, получение навыков работы с САD-системами. Базируется на знаниях, умениях и практических навыках, полученных студентами при изучении таких дисциплин, как «Информатика», «Начертательная геометрия и инженерная графика», «Основы систем автоматизированного проектирования», «Инструментальные и программные средства графических систем». В ходе изучения дисциплины формируются стартовые знания и умения для изучения дисциплины «Проектирование и изготовление деталей методом ЗD-печати» и «Программирование станков с числовым программным управлением».

Полученные знания, умения и навыки будут использованы студентами при выполнении курсовых работ, выпускной квалификационной работы, в практической деятельности.

3. Планируемые результаты обучения по учебной дисциплине и их соотношение с планируемыми результатами освоения образовательной программы

3.1. Планируемые результаты освоения образовательной программы, относящиеся к учебной дисциплине

В результате освоения содержания дисциплины «3D-моделирование» студент должен обладать следующими компетенциями.

ПК-6.1; В34

3.2. Планируемые результаты обучения по учебной дисциплине

ПК-6.1 Способен применять САD- системы для создания цифровых моделей изделий, получаемых методами аддитивных технологий, для моделирования конструктивных решений и структурно-компоновочных вариантов узлов и систем оборудования аддитивного производства, для оформления проектно- конструкторской документации.

3-ПК-6.1 Знать: конструкторские системы автоматизированного проектирования компьютерного моделирования (классы наименования, возможности и порядок работы в них) и методику их применения при разработке несложных конструкций

У-ПК-6.1 Уметь: создавать в конструкторских системах автоматизированного проектирования цифровые модели и чертежи несложных изделий, изготавливаемых методами аддитивных технологий; структурно компоновочные варианты узлов и систем оборудования аддитивного производстваВ-ПК-6.1 Владеть: навыками применения конструкторских систем автоматизированного проектирования для создания цифровых моделей и оформления проектно-конструкторской документации на несложные изделия и оборудование аддитивного производства.

4. Структура и содержание учебной дисциплины

4.1. Структура учебной дисциплины

No	Тема/раздел учебной	Виды учебных занятий и их				Ссылка	Форма
п/п	дисциплины	трудоёмкость в часах				на	контроля
		Лекции	Лекции ЛР СРС КР			ПР УД	
1.	Отечественные и зарубежные	4 25		25		31	Рф,
	CAD/CAM-системы	18			АКР		
2.	Твердотельное моделирование в	8 14 20		32, У1,	ОЛ(э)		
	САD-системах среднего класса			B1			

3	Создание управляющих	6	4	18		33, У2,	
	программ в САМ-системах					B2	
	Итого:	10	18	63	18		
	HIOIO.	10	10	03	10		

Примечание: ЛР — лабораторные работы, Рф — реферат, АКР — аудиторная контрольная работа, ОЛ(э) — отчёт о выполнении лабораторной работы (чертёж, 3D-модель, управляющая программа — в электронном виде), Э — экзамен, КР — курсовая работа

4.2. Содержание учебной дисциплины

$N_{\underline{0}}$	Тема/раздел	Содержание	Трудо-
п/п	учебной		ёмкость,
	дисциплины		час
Лекі	ции		
1.	Отечественные	CAD/CAM-системы лёгкого, среднего, тяжелого класса:	2
	и зарубежные	возможности, область применения, различия, перспективы	
	CAD/CAM-	развития	
	системы	Информационная поддержка жизненного цикла (PDM).	1
		CALS-технологии.	
		Применение современных компьютерных технологий для	1
		быстрого прототипирования. Форматы представления	
		данных. STL-формат. Дизайн в прототипировании	
2.	Твердотельное	Геометрические модели в автоматизированном	2
	моделирование	конструировании. Электронная модель изделия. Основные	
	в CAD-	термины модели. Общие принципы твердотельного	
	системах	моделирования деталей. Объектные привязки.	
	среднего	Параметризация и использование ограничений.	2
	класса	Параметрические библиотеки: стандартные	
		конструктивные элементы, генераторы моделей.	
		Параметризация, таблицы параметров, переменные (типы).	
		Надстройки и модули для расчета характеристик изделия.	2
		Трубопроводы, валы и механические передачи, листовой	
		металл.	
		Ассоциативные виды. Получение сборочных чертежей	2
		изделия и комплекта документов. Элементы оформления	
		чертежей: нанесение размеров, чертежные символы,	

		текстовая информация.	
3.	Создание	Структура САМ-системы. Последовательность создания	2
	управляющих	управляющей программы. Конструктивные элементы.	
	программ в	Работа с импортированной моделью. Распознавание	
	САМ-системах	элементов. Создание модели в САМ-системе.	
		Схемы обработки. Визуализация процесса обработки	2
		заготовок на станках с ЧПУ. Оптимизация управляющей	
		программы.	
		Создание файла данных постпроцессора. Создание	2
		постпроцессора.	
	,	Итого:	18
Лабо	раторные работі	ы	
1.	Твердотельное	Лабораторная работа 1. Интерфейс Autodesk Inventor.	2
	моделирование	Создание и редактирование эскиза. Зависимости на 2D-	
	в CAD-	эскизе.	
	системах	Лабораторная работа 2. Отработка навыков создания	2
	среднего	3D-моделей деталей с применением основных операций	
	класса	«Выдавливание», «Вращение», «Сдвиг», «Лофт».	
		Лабораторная работа 3. Создание 3D-моделей деталей	4
		сборочного узла.	
		Лабораторная работа 4. Создание 3D-модели сборки.	2
		Создание недостающей детали непосредственно в сборке.	
		Лабораторная работа 5. Создание чертежа и	2
		спецификации.	
		Лабораторная работа 6. Создание анимации	2
		разнесенного вида.	
2.	Создание	Лабораторная работа 1. Интерфейс FeatureCAM.	2
	управляющих	Создание управляющей программы для токарной	
	программ в	обработки на основе импортированной 3D-модели	
	САМ-системах	Лабораторная работа 2. Создание управляющей	2
		программы для фрезерной обработки на основе 3D-	
		модели, созданной непосредственно в САМ-системе	
	ı	Итого:	18

Самостоятельная работа

Самостоятельная работа студента по учебной дисциплине регламентируется «Положением об организации самостоятельной работы студентов в НТИ НИЯУ МИФИ»

№	Тема/раздел учебной	Вид самостоятельной работы и её	Трудоёмкость, час
Π/Π	дисциплины	содержание	
1.	Отечественные и	работа с конспектами;	25
	зарубежные	– чтение дополнительной литературы, в	
	CAD/CAM-системы	том числе использование Интернет-	
		ресурсов;	
		– подготовка реферата/презентации;	
		- подготовка к аудиторной контрольной	
		работе	
2.	Твердотельное	– чтение дополнительной литературы, в	20
	моделирование в	том числе использование Интернет-	
	CAD-системах	ресурсов;	
	среднего класса	- самостоятельное создание чертежей и	
		3D-моделей по индивидуальному	
		заданию в рамках курсовой работы.	
3.	Создание	- чтение дополнительной литературы, в	18
	управляющих	том числе использование Интернет-	
	программ в САМ-	ресурсов;	
	системах	- самостоятельная разработка	
		управляющих программ на основе	
		3D-моделей по индивидуальному	
		заданию в рамках курсовой работы.	
		– подготовка к промежуточной	27
		аттестации	
		Итого:	90

Примерные темы рефератов

- 1. Направления и перспективы развития систем CAD/CAM-систем.
- 2. Современные САD/САМ-системы, их анализ.
- 3. Применение CAD/CAM-систем на предприятиях РФ/региона.

- 4. Применение программных продуктов компании АСКОН на предприятиях $P\Phi$ /региона.
 - 5. Компетенция Worldskills «Инженерный дизайн CAD».
 - 6. Параметрическое моделирование и ассоциативные построения в САD-системах.
 - 7. SolidEdge: преимущества синхронной технологии.
 - 8. Создание фотореалистичных изображений с САD-системах.
- 9. Типы геометрических моделей, их создание средствами современных графических систем.
- 10. Особенности моделирования сложных объектов/сборок в современных САD-системах.
- 11. Возможности создания и редактирования 3D-моделей в CAD-системах методом синхронной технологии.

Перечень учебно-методического обеспечения самостоятельной работы студентов приведён в Приложении 1.

Методические указания для студентов по освоению дисциплины приведены в Приложении 2.

5. Информационно-образовательные технологии

Рекомендации для преподавателя по использованию информационно-образовательных технологий содержатся в «Положении об организационных формах и технологиях образовательного процесса в НТИ НИЯУ МИФИ».

Аудиторные занятия представлены в формате лекций и лабораторных работ.

Лекции проводятся с использованием учебных презентаций, а также презентаций, подготовленных студентами в рамках выполнения самостоятельной работы.

Лабораторные работы проводятся в компьютерном классе с применением специализированного программного обеспечения CAD/CAM. При проведении лабораторных работ преследуются следующие цели:

- закрепление полученных знаний, приобретение умений и навыков в области создания 3D- моделей изделий в CAD-системах;
- закрепление полученных знаний, приобретение умений и навыков в области создания управляющих программ на основе 3D- моделей изделий в CAM-системах;
 - развитие творческой инженерной инициативы.

Проведение лабораторных работ основывается на интерактивном методе обучения, при которой студенты не просто работают под руководством преподавателя, но и осваивают программный продукт самостоятельно, взаимодействуя с программной средой. При этом

доминирует активность студентов в процессе обучения. Место преподавателя в интерактивных занятиях сводится к направлению деятельности студентов на достижение целей занятия.

Для повышения уровня подготовки студентов в течение семестра организуются консультации, во время которых проводится разъяснение сложных для понимания вопросов теоретического курса и практических задач, принимаются задолженности по контрольным работам и контролируется ход выполнения самостоятельных работ.

7. Средства для контроля и оценки

В данном разделе приводятся средства для контроля уровня текущей успеваемости и достижения ПР УД.

Для оценки достижений студента используется балльно-рейтинговая система. Для промежуточной аттестации используется фонд оценочных средств (ФОС) по дисциплине.

По окончании изучения дисциплины студент предоставляет для проверки отчёты по выполненным лабораторным работам (файлы чертежей, 3D-моделей, траекторий обработки и управляющих программ) и результаты выполнения самостоятельной работы – реферат и/или презентацию в PowerPoint.

Итоговый контроль по теоретической составляющей дисциплины проводится в форме экзамена, практической – в форме защиты курсовой работы. К защите допускаются студенты, выполнившие весь объём работ, предусмотренных заданием на курсовое проектирование. Курсовая работа считается принятой после предъявления руководителю всех требуемых материалов – пояснительной записки, чертежей и рабочих файлов, содержащих 3D-модели изделия, траектории обработки и управляющие программы, – в полном объёме и успешной защиты.

Студенты, не выполнившие лабораторные работы и не оформившие отчёты по выполненным лабораторным работам, к экзамену не допускаются.

Вопросы к экзамену

- 1. Визуализация обработки в САМ-системах.
- 2. Системы САПР типа PLM/PDM.
- 3. Программные продукты компании АСКОН.
- 4. Моделирование в Autodesk Inventor.
- 5. Системы управления жизненным циклом изделия.

- 6. Понятие CALS-технологии, место в ней CAD/CAM-систем.
- 7. Системы САПР для объемного прототипирования.
- 8. Назначение и возможности программного продукта ГеММА-3D.
- 9. Назначение и возможности программного продукта PowerMill.
- 10. Назначение и возможности программного продукта SolisEdge.
- 11. Возможности 3D-моделирования при проектировании деталей.
- 12. Возможности 3D-моделирования при проектировании сборочных единиц.

7. Учебно-методическое и информационное обеспечение учебной дисциплины

7.1. Основная литература

- 1. Большаков В.П. КОМПАС-3D для студентов и школьников. Черчение информатика, геометрия. СПб.: БХВ-Петербург, 2010. 304 с.: ил.+DVD (ИиИКТ)
- 2. Большаков В.П. Создание трёхмерных моделей и конструкторской документации в системе КОМПАС-3D. Практикум. СПб.: БХВ-Петербург, 2010. 496 с.: ил.+DVD (Учебное пособие).
- 3. КОМПАС-3D v. 5.11-8.0 [Электронный ресурс]: практикум для начинающих/ Богуславский А.А., Третьяк Т.М., Фарафонов А.А.— Электрон. текстовые данные.— М.: СОЛОН-ПРЕСС, 2010.— 272 с. Электронный документ, точка доступа ЭБС «IPRbooks».
- 4. Моделирование в системе КОМПАС [Электронный ресурс]: методические указания к практическим занятиям по дисциплине «Компьютерная графика»/ Ваншина Е.А., Егорова М.А.— Электрон. текстовые данные.— Оренбург: Оренбургский государственный университет, 2011.— 74 с. Электронный документ, точка доступа ЭБС «IPRbooks».
- 5. http://knowledge.autodesk.com/support/inventor-products/learn-explore/caas/CloudHelp/cloudhelp/2014/RUS/Inventor/files/GUID-FAB20788-37A4-4A49-BBFF-4231DEEFA8B3-htm.html учебные пособия по Autodesk Inventor.
- 6. 5. http://help.autodesk.com/view/INVNTOR/2014/RUS учебные пособия по Autodesk Inventor.
- 7. Елисеев В.Г. Автоматизация проектирования в программном комплексе T-Flex [Электронный ресурс]: учебное пособие / В.Г. Елисеев, В.М. Коробов, Н.Н. Милованов. Москва: НИЯУ МИФИ, 2010. ISBN 978-5-7262-1192-0 (http://libcatalog.mephi.ru/cgi/irbis64r/cgiirbis 64.exe)

7.2. Дополнительная литература

- 1. Большаков В.В., Бочков А.Н.. Основы 3D-моделирования. Изучаем работу в AutoCAD, KOMПAC-3D, SolidWorks, Inventor. СПб.: Питер, 2012. http://www.ozon.rU/context/detail/id/1 8448331/
- 2. Большаков В.В., Бочков А.Н., Лячек Ю.В.. Твердотельное моделирование деталей в CAD-системах AutoCAD, KOMTLAC-3D, SolidWorks, Inventor, Creo. http://www.ozon.ru/context/detail/id/29855879/
- 3. Красильникова Г.А., Самсонов В.В. и др. Автоматизация инженерно-графических работ. СПб.: Питер, 2000.

7.3. Информационное обеспечение (включая перечень ресурсов информационнотелекоммуникационной сети «Интернет»)

- 1. научная библиотека e-librari
- 2. ЭБС «Лань»
- 3. ЭБС «IPRbooks».
- 4. http://www.netramm.com.
- 5. www.raymor.com.
- 6. https://lirias.kuleuven.be.
- 7. http://www.lia.org.
- 8. http://cdn.intechweb.Org/pdfs/12285.pdf.
- 9. https://docs.google.com.
- 10. http://www.uasvision.com.
- 11. http://window.edu.ru/window/library
- 12. http://www.intuit.ru/courses.html
- 13. http://fcior.edu.ru/

8. Материально-техническое обеспечение учебной дисциплины

Вид занятия	Материально-техническое обеспечение
Лекции	- комплект электронных презентаций;
	- презентационная техника (экран, проектор, ноутбук)
Лабораторные	- компьютерный класс;
работы	– презентационная техника (экран, проектор, ноутбук);
	– специализированное программное обеспечение (КОМПАС-3D, Autodeak
	Inventor, FeatureCAM)

Приложение 1. Перечень учебно-методического обеспечения самостоятельной работы студентов

- 1. Стандарт организации. Требования к оформлению текстовой документации. СТО HTИ-2-2014.- HTИ HИЯУ МИФИ: Новоуральск, 2014.-147 с.
- 2. Методические рекомендации по организации самостоятельной работы обучающихся НТИ НИЯУ МИФИ.

Приложение 2. Методические указания для студентов по освоению дисциплины

Дисциплина «Моделирование в среде САD/САМ» изучается на протяжении одного семестра. Форма контроля по итогам изучения — экзамен, защита курсовой работы. Основными видами учебных занятий являются лекции и лабораторные работы, также предусмотрена самостоятельная работа студента в значительном объёме. На лекциях рассматриваются основные теоретические вопросы, связанные с особенностями 3D-моделирования в современных системах автоматизированного проектирования. Лекционный материал требует обязательного закрепления путём самостоятельного изучения: помимо повторения материала конспекта лекций, студент обязан прочитать основную и по возможности дополнительную литературу по изучаемой теме, дополнить конспекты лекций недостающим материалом, выписками из рекомендованных первоисточников. Вопросы, не рассмотренные на лекциях или рассмотренные не полностью, должны быть изучены студентами в ходе самостоятельной работы.

По согласованию с преподавателем студент может подготовить реферат и/или презентацию по одной из предложенных тем. По материалу реферата студент должен сформулировать десять вопросов и ответить на них. Это способствует лучшему пониманию рассмотренного материала.

Дисциплина «Моделирование в среде CAD/CAM» в большей степени позиционирована как практическая, так как она формирует компетенции, направленные на свободное владение средствами автоматизированного проектирования, и её основной задачей является приобретение студентами навыков работы в CAD/CAM-системах. Поэтому значительное внимание уделяется проведению лабораторных работ, а также выполнеию курсовой работы.

В ходе лабораторных работ студенты под руководством преподавателя осваивают методы 3D-моделирования и формирования управляющих программ. Для этого используется проектор, с помощью которого преподаватель показывает правила применения команд и последовательность создания модели.

В рамках курсовой работы студенты осуществляют моделирование и формирование управляющих программ на основе 3D-модели в соответствии с полученным заданием самостоятельно, применяя умения и навыки, полученные в ходе выполнения лабораторных работ.

Для проверки знаний студента в ходе изучения дисциплины проводятся аудиторные контрольные работы. Теоретические знания проверяются и оцениваются при проведении итоговой аттестации по дисциплине, которая проводится в форме экзамена. Проверкой

умений и практических навыков служит выполнение лабораторных работ и задания курсовой работы.

Для подготовки к занятиям, текущему контролю и промежуточной аттестации студенты могут воспользоваться электронной библиотекой НТИ НИЯУ МИФИ, где они имеют возможность получить доступ к учебно-методическим материалам, как библиотеки вуза, так и иных электронных библиотечных систем. В свою очередь, студенты могут взять на дом необходимую литературу на абонементе библиотеки НТИ НИЯУ МИФИ, а также воспользоваться электронным читальным залом.

Дополнения и изменения к рабочей программе:

на 2018/2019 уч.год

В рабочую программу вносятся следующие изменения:

	Рабочая	программа	пересмотрена	и	олобрена	на	заселании	кафедры
// \\	20		персемотрена	11	одоорена	m	заседанни	кифедры
\\ /′_			TM					
	заведуюц	ций кафедрой	1 IVI					
			на 2019	9/202	0 уч.год			
	В рабочу	ю программу	вносятся следую		•			
	Z pwes ty	10 11p 0 1 p 41.11.11						
	D 6				_			1
	Рабочая		пересмотрена	И	одобрена	на	заседании	кафедры
«»_	20							
	Заведуюц	ций кафедрой	TM				 	
			20	/20	уч.год			
	D 6				,			
	в раоочу	ю программу і	вносятся следую	щие	изменения:			
	Рабочая	программа	пересмотрена	И	одобрена	на	заседании	кафедры
«»_	20	Γ.						
	Заведуюц	ций кафедрой	TM					
			на 20	_/20_	уч.год			
	В рабочу	ю программу	вносятся следую	щие	изменения:			
	Рабочая	программа	пересмотрена	И	одобрена	на	заседании	кафедры
«»_		Γ.	TN 4					
	заведуюц	ций кафедрой	I IVI					
			Программ	а дей	і́ствительна			
	на 20	/20 уч.год	ц		(заве	едуюц	ций кафедрой	TM)
	на 20	/20 уч.год	ц		(заве	едуюц	ций кафедрой	TM)
		-	ц			-		
		-	ц			-		
		•						