Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Карякин Андрей Висс**упинностерство нау**ки и высшего образования Российской Федерации Должность: И.о. руководителя НТИ НИЯУ МИФИ

Дата подписания: 10.02.2023 10:20:27 Федеральное государственное автономное образовательное учреждение Уникальный программный ключ: высшего образования 828ee0a01dfe7458c35806237086408a6ad0ea69 высшего образования Национальный исследовательский ядерный университет «МИФИ»

НОВОУРАЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ

УТВЕРЖДЕНА Ученым советом НТИ НИЯУ МИФИ Протокол № 4 от 30.08.2021 г.

Рабочая программа учебной дисциплины «Электрохимические и электрофизические методы обработки»

Направление подготовки	15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств
Квалификация (степень) выпускника	Бакалавр
Профиль подготовки	Технология машиностроения
Форма обучения	Очная

Форма обучения	Очная
Семестр	6
Трудоёмкость, ЗЕТ	2
Трудоёмкость, часов	72
Аудиторные занятия, часов, в т.ч.:	36
- лекции	18
- лабораторные занятия	-
- практические занятия	18
Самостоятельная работа, часов	36
Занятия в интерактивной форме, часов	20
Форма итогового контроля	зачет

Рабочую программу составил:

ст. преподаватель кафедры ОПД Гацкова Юлия Викторовна

Содержание

1 Общие положения	4
2 Цели освоения учебной дисциплины	
В Место учебной дисциплины в структуре ООП ВО	
4 Компетенции студента, формируемые в результате освоения учебной дисциплины	
5 Структура и содержание учебной дисциплины	
7 Учебно-методическое и информационное обеспечение учебной дисциплины	
1 1 ·	12

1 Общие положения

Рабочая программа дисциплины «Электрохимические и электрофизические методы обработки» разработана в соответствии с требованиями:

- Образовательного стандарта высшего образования НИЯУ МИФИ по направлению подготовки 15.03.05 «Конструкторско-технологическое обеспечение машиностроительных производств» (утвержден Ученым советом университета, протокол №18/03 от 31.05.2018 г., актуализирован Ученым советом университета, протокол №18/09 от 10.12.2018 г.);
- компетентностной модели выпускника по направлению подготовки 15.03.05, профилю подготовки «Технология машиностроения»;
- рабочего учебного плана по направлению подготовки 15.03.05, профилю подготовки «Технология машиностроения»

2 Цели освоения учебной дисциплины

Основная цель изучения дисциплины «Электрохимические и электрофизические методы обработки» ознакомить студентов c основами теории процессов, технологическими приемами, достигаемыми показателями И конструктивными особенностями оборудования; научить студентов практическому использованию возможностей этих методов для повышения эффективности машиностроительного производства.

3 Место учебной дисциплины в структуре ООП ВО

Данная учебная дисциплина входит в вариативную часть общепрофессионального модуля подготовки бакалавров по направлению 15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств. Изучение дисциплины согласно РУП происходит во 2 семестре 3 курса.

Методы, изучаемые в данном курсе, базируются на фундаментальных законах физики, химии, математики и являются основой для разработки новых технологических процессов размерного формообразования, создания материалов с заданными свойствами, износостойких покрытий и упрочняющих технологий.

4 Компетенции студента, формируемые в результате освоения учебной лисшиплины

Данная дисциплина участвует в формировании следующих компетенций.

Код компетенции	Компетенции		
ПК-4	Способен участвовать в разработке проектов изделий машиностроения, средств технологического оснащения, автоматизации и диагностики машиностроительных производств, технологических процессов их изготовления и модернизации с учетом технологических, эксплуатационных, эстетических, экономических, управленческих параметров.		
ПК-7	Способен осваивать на практике и совершенствовать технологии, системы и средства машиностроительных производств, участвовать в разработке и внедрении оптимальных технологий изготовления машиностроительных изделий, выполнять мероприятия по выбору и эффективному использованию материалов, оборудования, инструментов, технологической оснастки, средств диагностики, автоматизации, алгоритмов и программ выбора и расчетов параметров технологических процессов для их реализации.		

В результате освоения дисциплины студент должен:

Знать:

- значение и место электрофизических и электрохимических методов обработки в технологических процессах машиностроительного производства; возможности и ограничения применения этих методов;
- основные сведения о теории явлений и процессов, на которых основаны электрофизические и электрохимические методы обработки;
- основные технологические схемы, приёмы и достигаемые показатели обработок производительность, точность, качество поверхности;
- параметры и режимы технологических процессов изготовления деталей машиностроения;
- конструктивные особенности станков и оборудования электрофизической и электрохимической обработки;
- основы проектирования технологических процессов электроэрозионной, электрохимической, ультразвуковой размерной обработки.

Уметь:

- У1 оценивать возможность и необходимость применения электрофизических и электрохимических методов обработки в технологических процессах машиностроительного производства;
- У2 определять и назначать оптимальные технологические режимы процессов; выбирать технологические режимы технологических операций изготовления деталей машиностроения;
- **У3** выбирать стандартное и вспомогательное оборудование для выполнения технологических операций, обеспечивать его эффективную работу и обслуживание; пользоваться литературно-справочными данными по дисциплине.

Владеть:

- **В1** способностью использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования;
- **B2** навыками расчетов характеристик процессов электрофизической и электрохимической обработки, обрабатываемости материала и выбора материала для электрода-инструмента;
- **B3** способностью выбирать средства автоматизации технологических процессов и машиностроительных производств.

5 Структура и содержание учебной дисциплины

5.1 Структура, содержание и календарный план дисциплины

Общая трудоемкость дисциплины составляет 2 зачетные единицы, 72 часа

	Неделя		учебной сти студентов	СРС,
Раздел учебной дисциплины	семестр а	и трудоемі Лекции	практичес	час
			кие работы	
1. История возникновения и перспективы	1	1		T1/4
развития ЭФ и ЭХ методов обработки. Связь с другими науками.				
Классификация ЭФ и ЭХ методов				
обработки материалов. Комбинированные				
методы обработки.				
2. Электроэрозионная обработка металлов	2,3	3	ПР1/2ч	T2/4
(часть I).				
Физические основы электроэрозионной				
обработки. Эффект эрозии. Пробой рабочей среды. Классификация				
импульсов. Параметры рабочих				
импульсов.				
Тепловые процессы на электродах и в				
рабочей среде. Электродинамические,				
газодинамические процессы при эрозии				
электрода. Рабочая среда для ЭЭ				
обработки. Гидродинамические явления в межэлектродном зазоре, их роль в				
стабилизации процесса эрозии. Основные				
параметры рабочей среды.				
3. Технологические показатели процесса	4,5	2	ПР2/2ч	
ЭЭ обработки				
Технологические схемы и режимы				
обработки. Производительность ЭЭ				
обработки. Электроэрозионная				
обрабатываемость материалов. Критерий Палатника. Износ и стойкость ЭИ.				
Точность ЭЭ обработки. Погрешности ЭЭ				
обработки. Качество поверхности при ЭЭ				
обработке. Параметры шероховатости				
поверхности. Геометрическая модель				
образования шероховатости.				
Структура и свойства поверхностного				
слоя. Характеристика зон поверхностного слоя.				
4. Электроэрозионное оборудование.	6,7	2	ПР3/2ч	T3/4
Механическая часть ЭЭ станка. Системы	0,7		3,21	-5/ !
управления ЭЭ станком. Вспомогательное				

оборудование ЭЭ станков.				
Технологические процессы изготовления				
типовых поверхностей и деталей.				
Обработка полостей штампов, матриц				
вырубных штампов и др.				
5. Размерная электрохимическая	8,9	2	ПР4/2ч	
обработка ЭХО (часть 2). Физико-	,			
химические основы электрохимической				
обработки. Явления анодного				
растворения. Параметры анодного				
растворения. Закон Фарадея.				
Электрохимические эквиваленты металлов				
и сплавов. Выход по току.	10 11 10	2	TID5 / 4	ПО1/0
6. Разновидности процессов ЭХО.	10,11,12	2	ПР5/4ч	Д31/8
Классификация методов. Растворы				
электролитов, используемых в процессах				
(ЭХО). Требования к электролитам ЭХО.				
Межэлектродный зазор. Копирование				
электрода инструмента на заготовке.				
Технологические показатели ЭХО.				
Производительность ЭХО. Качество				
поверхности при ЭХО. Негативные				
явления при ЭХО. Оборудование для				
ЭХО. Типовая структура станков ЭХО.				
Источники питания. Системы подачи				
электролита. Системы регулирования				
режима ЭХО.				
7. Типовые и специальные	13, 14	2	ПР6/2ч	Д32/8
	13, 14	2	111 0/29	Д32/6
1 '				
1 1 1				
Комбинированные процессы ЭХО.				
Анодно-механическая обработка. Роль				
механических факторов в процессе				
обработки.				
8. Ультразвуковая обработка материалов	15	2		Д33/8
УЗО (часть 3).				
Ультразвуковые колебания. Форма УЗ				
волн. Основные характеристики УЭ поля.				
Акустические свойства среды.				
Поглощение и отражение ультразвука.				
Стоячие волны. УЗ поля в жидкостях.				
Роль УЗ колебаний в технологических				
процессах.				
9. Технологические показатели УЗО.	16,17,18	2	ПР7/4ч	
Производительность, точность и качество	, ., .		• •	
поверхностей при размерной УЗО. Основы				
технологии УЗ обработки деталей. Виды и				
особенности размерной УЗО.				
1 1				
1 Оборудорание для УЗО				
Оборудование для УЗО.				
Компоновка УЗ станка. Характеристики				

5.2 Содержание практических занятий

Раздел курса	Трудое мкость, час	Темы практических занятий
Раздел 2 ПР1	2	Расчет характеристик электроэрозионного способа обработки металлов
Раздел 3	2	Выбор материалов электрода – инструмента (ЭИ).
ПР2		Электроэрозионная обрабатываемость материалов.
Раздел 4 ПР3	2	Выбор типа ЭЭ станка для обработки вырубного штампа – матрицы
Раздел 5 ПР4	2	Основы электрохимической обработки. Расчет объема снятого металла при ЭХО материалов
Раздел 6 ПР5	4	Расчет характеристик электрохимической обработки заготовок
Раздел 7 ПР6	2	Разработка параметров анодно-механической резки проката
Раздел 8,9 ПР7	4	Ультразвуковая обработка хрупких материалов. Расчет параметров инструмента. Выбор режимов УЗО
Итого	18	

5.3 Содержание и трудоемкость СРС

Индекс	Трудое мкость, час	Наименование работы
T1	4	Особенности комбинированных методов размерной обработки заготовок
T2	4	Гидродинамические явления в МЭП при ЭЭО. Основные параметры рабочей среды.
Т3	4	Качество поверхности при ЭЭО. Геометрическая модель формирования параметров шероховатости
Д3-1	8	Обработка непрофилированным электродом-инструментом
Д3-2	8	Выбор припуска для ЭХО. Понятие о выравнивающей способности процесса

Д3-3	8	Параметры УЗ волн. Основные характеристики УЗ поля. Явление кавитации
Итого	36	

6 Оценочные средства для текущего контроля успеваемости и учебнометодическое обеспечение самостоятельной работы студентов

Для текущего контроля успеваемости студентов по всем разделам учебной программы используются результаты работ, выполненных на практических занятиях, содержание, которых, отражено в пункте 5.2. Кроме этого, в течение семестра студенты выполняют три домашних задания ДЗ1, ДЗ2, ДЗ3 (раздел 5.3).

Зачет по дисциплине студенты получают при условии выполнения всех практических работ и домашних заданий.

Имеется вариант тестового опроса студентов. Перечень вопросов для тестового опроса приведен в приложении А.

7 Учебно-методическое и информационное обеспечение учебной дисциплины

7.1 Основная литература и дополнительная литература

- 1. Артамонов, Б.А. Электрофизические и электрохимические методы обработки материалов: учебное пособие (в 2-х томах) / Б.А. Артамонов, Ю.С. Волков, В.И. Дрожалова и др.; под ред. В.П. Смоленцева. М.: Высшая школа,1983. Т.1. 247 с., Т.2. 208 с.
- 2. Кушнер, В.С. Технологические процессы в машиностроении: учебник для студ. высш. учеб. заведений / В.С. Кушнер, А.С. Верещака, А.Г. Схиртладзе. М.: Издательский центр «Академия», 2011. 416 с.
- 3. Носенко, В.А. Физико-химические методы обработки материалов: учебное пособие / Д.А. Носенко, М.В. Даниленко. Старый Оскол: ТНТ, 2013. 196 с.
- 4. Попилов Д.Я. Электрофизическая и электрохимическая обработка материалов: Справочник 2-е изд., перераб. и доп. М.: Машиностроение, 1982. 400 с., ил.
- 5. Справочник по электрохимическим и электрофизическим методам обработки / Под общ. ред. В.А. Волосатова. Л.: Машиностроение, 1988. 719 с.
- 6. Фетисов, Г.П. Материаловедение и технология металлов / Г.П. Фетисов, М.Г. Карпман, В.М. Матюнин. М.: Высшая школа, 2000. 638c.

7. Ярушин, С.Г. Технологические процессы в машиностроении: учебник для бакалавров / С.Г. Ярушин. – М.: Издательство Юрайт, 2014. – 564 с.

7.2 Методическое обеспечение

- 1 Гацкова Ю. В., Гупалов Б. А. Сборник заданий для практических занятий. Учебнометодическое пособие по курсу «Электрофизические и электрохимические методы обработки» для студентов направления подготовки 15.03.05 «Конструкторскотехнологическое обеспечение машиностроительных производств» очной формы обучения. Новоуральск: изд. НТИ НИЯУ «МИФИ», 2018. 32 с.
- 2 Гацкова Ю.В. Тексты лекций, методические указания, методические разработки.

7.3 Информационное обеспечение (включая перечень ресурсов информационно-телекоммуникационной сети «Интернет»)

- 1 http://nsti.ru
- 2 научная библиотека e-librari
- 3 ЭБС «Лань»
- 4 ЭБС «IPRbooks»

8 Материально-техническое обеспечение учебной дисциплины

- 8.1 Лаборатория электрофизических методов обработки
- Ультразвуковой станок
- Электроэрозионный станок
- TECTRONICS
- 8.2 Измерительная лаборатория

ВОПРОСЫ ПО КУРСУ "ЭЛЕКТРОФИЗИЧЕСКИЕ И ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ МАТЕРИАЛОВ"

- 1. Место и значение ЭФ и ЭХ методов размерной обработки.
- 2. Характерные свойства ЭФ и ЭХ методов обработки.
- 3. Физические основы электроэрозионной обработки. Электрический пробой в газах и диэлектриках.
- 4. Эффект эрозии.
- 5. Параметры рабочих импульсов.
- 6. Генераторы импульсов. Классификация.
- 7. Зависимые генераторы импульсов.
- 8. Автоматические регуляторы межэлектродного промежутка.
- 9. Производительность электроэрозионной обработки.
- 10. Качество поверхности при ЭЭ обработке. Шероховатость.
- 11. Электроискровая обработка. Среда дал электроискровой обработки.
- 12. Технологические методы электроискровой обработки.
- 13. Электроимпульсная обработка металлов.
- 14. Электрические разряды и преобразование энергии.
- 15. Разновидности электроконтактного (ЭК) метода обработки.
- 16. Технологические особенности ЭК обработки.
- 17. Качество обработанной поверхности при ЭК обработке.
- 18. Электрохимическая обработка в стационарном электролите.
- 19. Анодно-гидравлическая обработка. Производительность анодно-гидравлической обработки.
- 20. Точность анодно-гидравлической обработки.
- 21. Шероховатость и качество поверхности при а-г обработке.
- 22. Типовые и специальные технологические процессы анодно-гидравлической обработки.
- 23. Анодно-механическая обработка. Разновидности анодно-механической обработки. Достоинства и недостатки.
- 24. Анодно-механическая резка.
- 25. Анодно-механическое затачивание режущего инструмента.
- 26. Электроабразивное шлифование металлов. Схемы процессов.
- 27. Распространение УЗ волн в средах. Образование стоячей волны.
- 28. Магнитострикционный эффект.
- 29. Основные элементы УЗ установки.
- 30. Акустические инструменты для УЗ обработки.
- 31. Производительность УЗ обработки. Качество поверхности.
- 32. Методы и операции УЗ размерной обработки.