Документ подписан простой электронной подписью Информация о владельце:

ФИО: Карякин Андрей Виссарионом инистерств ообразования и науки Российской Федерации Должность: Руководитель НТИ НИЯУ МИФИ Дата подписания: 04.07.2073 11:39:09 высшего профессионального образовательное учреждение Уникальный программный ключ: высшего профессионального образования 2e905c9a64921ebc9b6e02a1 Национальный исследовательский ядерный университет "МИФИ"

НОВОУРАЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ

УТВЕРЖДЕНО

на заседании Ученого Совета "_30____"__08____2021__

Γ.

Рабочая программа учебной дисциплины "Математика"

(Первый – третий семестры)

Направление подготовки – 11.03.04_62 «Электроника и

наноэлектроника»

Профиль – «Промышленная электроника»

Квалификация (степень) – бакалавр

выпускника

Форма обучения – Очная

г. Новоуральск, 2021

Объем учебных занятий в часах:

Семестр	1	2	3	всего
Трудоемкость, ЗЕТ	5	4	3	12
Трудоемкость, ч.	180	144	108	432
Аудиторные занятия,	54	70	54	178
в т.ч.:				
- лекции	18	36	18	72
- практические занятия	36	34	36	106
- Лабораторная работа				
Самостоятельная работа	99	29	27	155
Контроль	27	45	27	99
Форма итогового контроля	Экзамен	Экзамен	Экзамен	39

Индекс дисциплины в Рабочем учебном плане (РУП) – Б1.0.02.01

Учебную программу составил заведующий кафедрой физикоматематических дисциплин НТИ НИЯУ МИФИ к.ф.-м.н., доцент Носырев Николай Анатольевич

	ограмма рассмо 1 НТИ НИЯУ М	-	ании і	сафедры Высшей	
"30"	08	20 21	_ Г.	протокол № 1	
и рекомен,	дована для поді	готовки бакала	вров.	-	
Заведующи	й кафедрой				
Н.А. Носы	прев	«	>>	20 г.	

СОДЕРЖАНИЕ

1	Цели освоения учебной дисциплины	4
2	Место учебной дисциплины в структуре ООП ВО	4
3	Планируемые результаты обучения по учебной	
	дисциплине и их соотношение с планируемыми	
	результатами освоения образовательной программы	5
4	Структура и содержание учебной дисциплины	
	4.1.1 Семестр 1	7
	4.1.2 Семестр 2	10
	4.1.3 Семестр 3	14
5	Информационно-образовательные технологии	17
6	Оценочные средства для текущего контроля	
	успеваемости и учебно-методическое обеспечение	
	самостоятельной работы студентов	18
7	Учебно-методическое и информационное обеспечение	
	учебной дисциплины	19
8	Материально-техническое обеспечение учебной	
	дисциплины	21
	Лополнения и изменения	22

Рабочая программа составлена в соответствии с Образовательным стандартом высшего образования Национального исследовательского ядерного университета «МИФИ» по направлению подготовки 11.03.04 наноэлектроника», (квалификация «Электроника (степень) И «академический бакалавр»), утвержденный ученым советом и рабочим учебным планом (РУП) по направлению университета «Электроника 11.03.04 наноэлектроника» подготовки И профиль «Промышленная электроника».

1. ЦЕЛИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целью освоения учебной дисциплины "Математика" является воспитание достаточно высокой математической культуры, развитие у студентов широкого кругозора в области математики и умения использовать математические методы и основы математического моделирования для решения практических задач.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В соответствии с кредитно-модульной системой подготовки бакалавров по направлению 11.03.04 «Электроника и наноэлектроника» учебная дисциплина «Математика» входит в базовую часть основного раздела общепрофессионального модуля и имеет шифр Б1.0.02.01.

Дисциплина содержит разделы Линейная алгебра и аналитическая геометрия, Математический анализ, Ряды, Дифференциальные уравнения и их системы.

Изучение данной дисциплины базируется на сумме знаний и практических навыков, полученных студентами в среднем образовании на предметах Алгебра и Геометрия. Изучается дисциплина в первых трёх семестрах (двух первых курсов).

Кафедрой высшей математики в третьем семестре параллельно с данной дисциплиной изучаются «Преобразование Лапласа» «Дискретная математика», в четвёртом семестре «Теория вероятностей и математическая статистика».

Методы, развиваемые в данном курсе, являются базовыми при изучении других компонентов цикла и многих спецпредметов, они применяются при решении большинства прикладных задачах. Навыки, полученные в данной дисциплине, помогают в изучении дисциплин, формирующих компетенции УК-1, УК-6,ОПК-1.

Предшествующий уровень образования обучаемого — среднее (полное) общее образование либо среднее профессиональное образование.

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ И ИХ СООТНОШЕНИЕ С

ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Данный раздел устанавливает сквозное соотношение между планируемым результатом (ПР) в данной учебной дисциплине (УД) и образовательной программе (ОП).

3.1. Планируемые результаты освоения образовательной программы, относящиеся к учебной дисциплине

В результате освоения содержания дисциплины «Математика» студент должен обладать следующими компетенциями (Таблица 1)

Компетенции

Таблица 1 Компетенции, реализуемые при изучении дисциплины

Код

Общепрофессиональные компетенции
Способность использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности. Универсальные компетенции
Способность осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач.
Способность управлять своим временем, выстраивать и реализовывать траекторию саморазвития на основе принципов образования в течение всей жизни.
Способность использовать знания естественно-научных дисциплин, применять методы математического анализа и моделирования, теоретического и экспериментального исследования в поставленных задачах.

3.2. Планируемые результаты обучения по учебной дисциплине

В результате освоения дисциплины «Высшая математика» студент должен:

<u>Знать</u>:

- 31 основные понятия векторной и линейной алгебры;
- 32 основы аналитической геометрии;
- 33 основные понятия дифференциального и интегрального исчисления;
- 34 критерии сходимости числовых и функциональных рядов;
- 35 основные понятия дифференциальных уравнений и их систем;

Уметь:

- У1 применять математические методы векторной и линейной алгебры;
- У2 применять математические методы аналитической геометрии;
- УЗ применять дифференциальное и интегральное исчисления;
- У4 применять теорию рядов и дифференциальных уравнений при решении инженерных задач;

Владеть:

- В1 различными методами решения систем линейных уравнений;
- B2 методами решения типовых задач по темам: линии на плоскости, линии и поверхности в пространстве;
- В3 методами исследования функций и построения их графиков;
- В4 методами решения типовых задач геометрии и физики на основе интегрального исчисления;
- В5 методами исследования сходимости числовых и функциональных рядов;
- В6 методами решения обыкновенных дифференциальных уравнений I и II порядка и линейных систем ДУ.

3.3. Соотношение планируемых результатов обучения по учебной дисциплине и результатов освоения образовательной программы

Таблица 2

Планируемый результат освоения образовательной программы, относящиеся к учебной дисциплине (ПР ОП)	Планируемый результат обучения по учебной дисциплине (ПР УД)	Соотношение
ОПК-1	31-35, Y1-Y4, B1-B6	Б1.Б.5/ОПК-1/31—
		Б1.Б.5/ОПК-1/В6

4. Структура и содержание учебной дисциплины

Общий объем дисциплины при очной форме обучения (ОФО) 12 3ЕТ, 432ч.

4.1. Структура учебной дисциплины. Соотношение лекций, практических занятий, лабораторных занятий, с их распределением по учебным неделям семестра, трудоёмкостью в часах, самостоятельной работой и методам контроля по каждому из семестров рассмотрено в п. 4.1.1 - 4.1.3.

4.1.1 **Семестр – 1** Трудоёмкость 5 ЗЕТ, 180 ч., экзамен Таблица 3

№ п/п	Название темы/раздела учебной дисциплины	Неделя семестра	3	Практические занятия на обра	ій, и	ИХ	Ссылка на ПР УД	Форма контроля
1	2	3	4	5	6	7	8	9
1.	Матрицы, определители	1-2	2	4		11		П 1
2.	Решение линейных систем	3-4	2	4		11	31,	Дз-1
3.	Линейные действия над векторами	5-6	2	4		11	У1,	
4.	Скалярное, векторное, смешанное произведение векторов	7-8	2	4		11	B1	Дз-2
5.	Прямая на плоскости	9-10	2	4		11		
6.	Плоскость и прямая в пространстве	11-12	2	4		11	31-32,	
7.	Кривые второго порядка	13-14	2	4		11	У1-У2,	Дз-3
8.	Поверхности второго порядка	15-16	2	4		11	B1-B2	
9.	Функции и их графики	17-18	2	4		11		
	Итого:			36		99		
10.	10. Экзамен (Э-1)]	Конт	гроль -	– 27 ч.	

Дз-1 «Матрицы. Решение линейных систем» выдаётся на 2 нед., сдача на 4 нед.,

Дз-2 «Векторы» выдаётся на 6 нед., сдача на 9 нед.,

Дз-3 «Линии и поверхности» выдаётся на 10 нед., сдача на 16 нед.

Содержание 1 семестра:

- 1. Определение матриц, их сравнение, транспонирование, умножение на число, сумма и разность, произведение матриц.
- 2. Определители второго и третьего порядка: определение, правило вычисления и основные свойства. Понятие минора и алгебраического дополнения элемента, раскрытие определителя по строке или столбцу.
- 3. Общее определение определителя n-го порядка. Задача о расстановке ладей на шахматной доске. Вычисление определителя четвертого порядка.
- 4. Обратная матрица: определение, теорема о существовании обратной матрицы (способ нахождения A⁻¹), проверка полученного результата.
- 5. Система линейных уравнений, определение ее решения. Метод Крамера нахождения решений линейной системы. Теорема Крамера. Матричная запись линейной системы. Матричный метод нахождения решения линейной системы.
- 6. Метод Гаусса и Жордана-Гаусса решения линейной системы. Случаи единственного решения, множества решений и отсутствия решений.
- 7. Однородная линейная система, существование ее нетривиального решения, базисные и свободные переменные при этом.
- 8. Скалярные и векторные величины. Способы задания векторов. Действия над векторами (графически): сравнение, умножение на число, сумма и разность. Основные свойства действий над векторами.
- 9. Линейная зависимость системы векторов. Размерность векторного пространства (прямой, плоскости, пространства). Афинный базис, афинные координаты вектора, нахождение их геометрически.
- 10. Скалярное произведение векторов: определение, основные свойства. Косинус угла между векторами. Модуль вектора. Проекции вектора на ось.
- 11. Декартова система координат, базисные векторы. Декартовы координаты вектора, запись вектора через базисные. Связь точек и векторов. Сравнение, умножение на число, сумма, разность векторов в координатной форме.
- 12. Скалярное произведение векторов в декартовых координатах. Модуль вектора, расстояние между точками и угол между векторами в координатной форме.
- 13. Правая тройка векторов. Векторное произведение: определение и основные свойства, геометрический смысл, синус угла между векторами.
- 14. Векторное произведение двух векторов в координатной форме. Площадь треугольника, заданного координатами вершин с помощью векторного произведения.
- 15. Смешанное произведение: определение, основные свойства и правило вычисления в координатной форме, геометрический смысл, проверка линейной зависимости.
- 16. Способы задания линии на плоскости, поверхности и линии в пространстве по Декарту и Жордану. Полярная система координат.

- 17. Уравнения прямой на плоскости: векторное, параметрическое, через две точки, каноническое, с угловым коэффициентом, общее, в отрезках и нормальное. Связь направляющего и нормального векторов прямой.
- 18. Взаимное расположение двух прямых на плоскости (по уравнениям), параллельность, перпендикулярность, точка пересечения. Расстояние от точки до прямой. Угол между двумя прямыми. Проекция точки на прямую.
- 19. Уравнения плоскости в пространстве: векторное, параметрическое, через три точки (точку и два направляющих вектора), общее в отрезках и нормальное.
- 20. Связь нормального и направляющих векторов плоскости. Взаимное расположение плоскостей (параллельность, совпадение, пересечение, перпендикулярность) по уравнениям. Расстояние от точки до плоскости. Угол между плоскостями.
- 21. Уравнения прямой в пространстве: векторное, параметрическое, по двум точкам, каноническое, общее, через проектирующие плоскости.
- 22. Взаимное расположение прямой и плоскости: параллельность, пересечение, перпендикулярность, проекция точки на плоскость, симметрия точки относительно плоскости. Угол между прямой и плоскостью.
- 23. Взаимное расположение двух прямых в пространстве по уравнениям: пересечение (точка пересечения), параллельность (расстояние), скрещивание (наименьшее расстояние).
- 24. Эллипс: определение, каноническое уравнение, свойства, построение.
- 25. Гипербола: определение, каноническое уравнение, свойства, построение.
- 26. Парабола: определение, каноническое уравнение, свойства, построение.
- 27. Общее уравнение линии второго порядка, приведение к каноническому уравнению по общему (при отсутствии х·у) выделением полных квадратов.
- 28. Директориальное свойство эллипса и гиперболы, правило нахождения их канонического уравнения.
- 29. Нахождение уравнения окружности по трем точкам.
- 30. Классификация линий второго порядка на плоскости. Цилиндрические и конические сечения.
- 31. Канонические уравнения и эскизы поверхностей второго порядка: эллипсоида, гиперболоидов, параболоидов.
- 32. Линейчатые поверхности (гиперболоид и параболоид). Цилиндрические и конические поверхности. Классификация поверхностей второго порядка.
- 33. Определение функции одной переменной, способы ее задания. Обратная функция, связь графиков взаимообратных функций. Основные элементарные функции, их графики и основные свойства.
- 34. Преобразования, влияющие на график функции (f(x)+c, f(x+c), $c \cdot f(x)$, $f(c \cdot x)$, f(x), f(x),

4.1.2 **Семестр – 2** Трудоёмкость 4 ЗЕТ, 144 ч., Экзамен

Таблица 4

№ п/п	Лица 4 Название темы/раздела учебной дисциплины	Неделя семестра	3	иды иткна учинеские занятия час	й, и	ИХ	Ссылка на ПР УД	Форма контроля
1	2	3	4	5	6	7	8	9
11.	Пределы последовательностей и функций	1-2	4	4		3		Пр. 4
12.	Непрерывность функций	3-4	4	4		3		Дз-4
13.	Производная функции одной переменной	5-6	4	3		3	33,	
14.	Свойства дифференцируемых функций	7-8	4	3		3	У3, В3	Дз-5
15.	Исследование функций и построение их графиков. Задачи на оптимизацию	9-10	4	4		3		
16.	Экстремумы функции нескольких переменных	11-12	4	4		3		АКР-1
17.	Неопределенный и определённый интеграл, их связь	13-14	4	4		3	22	
18.	Основные методы интегрирования	15-16	4	4		4	33, y3,	Дз-6
19.	Применения интегралов	17-18	4	4		4	B3-B4	
	Итого:			34		29		
20.	20. Экзамен (Э-2)]	Кон	гроль	– 45 ч.	

Дз-4 «Пределы и непрерывность» выдаётся на 2 нед., сдача на 5нед.,

Дз-5 «Производная функции» выдаётся на 7 нед., сдача на 13нед.,

АКР-1 «Функции нескольких переменных» на 12 неделе, 2 часа;

Дз-6 «Интегрирование» выдаётся на 15 нед., сдача на 18 нед.

Содержание 2 семестра:

- 1. Определение числовой последовательности и ее предела. Свойства пределов последовательности.
- 2. Определение предела функции в точке. Бесконечный предел и предел на бесконечности. Свойства пределов.
- 3. Бесконечно малая функция (БМ). Сравнение БМ: эквивалентность, символ "о". Первый замечательный предел, его применение. Основные эквивалентности БМ в пределах.
- 4. Бесконечно большая функция (ББ). Сравнение ББ: эквивалентность, символ "о". Шкала ББ при $x \to \infty$, её применение.
- 5. Связь БМ, ББ и других функций. Основные виды неопределенностей в пределах, способы их раскрытия. Второй замечательный предел, правило его применения.
- 6. Непрерывность функции в точке. Частичные пределы, их связь с непрерывностью. Точки разрыва функции, их классификация.
- 7. Непрерывность основных элементарных функций. Свойства непрерывных в точке функций.
- 8. Свойства непрерывных на отрезке функций: сохранение знака, ограниченность, достижение наибольшего и наименьшего значений, поиск корня f(x)=0 методом половинного деления, промежуточные значения.
- 9. Производная функции f(x): определение, геометрический смысл с уравнением касательной и нормали, физический смысл. Свойства производных.
- 10. Производные основных функций $(x^n, a^n, ln(x), sin(x), cos(x))$ с доказательствами.
- 11. Приращение дифференцируемой функции, понятие дифференциала и его связь с производной. Геометрический смысл дифференциала. Инвариантность формы дифференциала, его применение в приближенных вычислениях.
- 12. Производная обратной функции. Вывести производные arcsin(x), arctg(x). Производная неявно заданной функции.
- 13. Логарифмическое дифференцирование. Понятие гиперболических функций, их производные.
- 14. Свойства дифференцируемых на отрезке функций: теоремы Ферма, Ролля, Лагранжа и Коши.
- 15. Производные и дифференциалы высших порядков. Формула Тейлора, её коэффициенты и остаточный член в формах Пеано и Лагранжа.
- 16. вывести разложения sin(x), cos(x), e^x , ln(1+x), $(1+x)^n$ по формуле Маклорена.
- 17. Производные $y_x'(x)$, $y_{xx}''(x)$ для функции, заданной параметрически.
- 18. Определение точки экстремума. Связь монотонности функции и знака ее производной. Теорема Ферма (необходимое условие точек экстремума). Достаточные условия экстремума:
 - а) с помощью знака первой производной;
 - b) с помощью производных старших порядков.

- 19. Алгоритм нахождения точек экстремума. Вычисление наибольшего и наименьшего значений функции на отрезке, примеры задач на нахождение наибольшего и наименьшего значений функции одной переменной.
- 20. Определение выпуклой (вогнутой) НА ОТРЕЗКЕ ФУНКЦИИ. Связь выпуклости со знаком второй производной. Алгоритм нахождения точек перегиба.
- 21. Правило Лопиталя раскрытия неопределенностей в пределах.
- 22. Понятие асимптоты графика функций, их виды и способы нахождения.
- 23. Общий план исследования функций и построения графика функции.
- 24. Нахождение наибольшего (наименьшего) значения функции на ОТРЕЗКЕ.
- 25. Решение текстовых задач на оптимизацию.
- 26. Область нескольких переменных, окрестность точки. Открытая и замкнутая области нескольких переменных. Функции нескольких переменных (ФНП): определение, способы задания. Геометрический смысл Z=f(x,y), линии уровня.
- 27. Предел ФНП в точке. Непрерывность ФНП в точке. Основные свойства непрерывных ФНП.
- 28. Определение частной производной ФНП, правила их вычисления. Геометрический смысл частных производных для Z=f(x,y). Уравнение касательной плоскости и нормали.
- 29. Полный дифференциал ФНП, связь с Δf , инвариантность его формы. Полная производная по переменной t. Производная неявной функции.
- 30. Производная по направлению. Градиент функции: определение, правила вычисления, связь с производной по направлению и с линией (поверхностью) уровня.
- 31. Частные производные высших порядков. Теорема о смешанных производных ФНП. Дифференциалы высших порядков для ФНП, их коэффициенты для f(x, y) (треугольник Паскаля и бином Ньютона). Формула Тейлора для ФНП. Приближенные вычисления.
- 32. Точки экстремума ФНП. Необходимое условие экстремума. Достаточное условие экстремума в общем виде и для f(x, y), характер экстремума.
- 33. Условный экстремум ФНП. Метод множителей Лагранжа и метод подстановки.
- 34. Нахождение наибольшего и наименьшего значений ФНП в замкнутой ограниченной области (план).
- 35. Определение первообразной для f(x) на [a; b], теорема о двух первообразных. Неопределенный интеграл (НИ), его свойства. Таблица основных интегралов.
- 36. Определенный интеграл (ОИ) для f(x), как предел интегральных сумм, его основные свойства, теорема о среднем.
- 37. Интеграл с переменным верхним пределом, теорема о его производной.
- 38. Формула Ньютона-Лейбница и её применение.
- 39. Замена переменной в НИ и ОИ.Интегрирование по частям в НИ, ОИ, основные случаи.
- 40. Вычисление некоторых НИ методом неопределенных коэффициентов.

- 41. Дробно-рациональная функция, алгоритм ее разложения на сумму элементарных дробей:
 - а) выделение целой части, алгоритм "деление столбиком";
 - б) разложение многочлена на неприводимые множители, кратность корня;
 - в) метод неопределенных коэффициентов разложения на элементарные дроби.
- 42. Интегралы от элементарных дробей. Общий план интегрирования дробнорациональных функций.
- 43. Интегралы от тригонометрических функций; Основные случаи и способы интегрирования данных интегралов.
- 44. Интегралы от иррациональных функций. Примеры "неберущихся" интегралов.
- 45. Нахождение площади криволинейной трапеции и площадей плоских фигур с помощью ОИ (ограниченных $y_i = f_i(x)$; параметрических заданными).
- 46. Площадь криволинейного сектора. Нахождение площади фигуры в полярных координатах.
- 47. Объем тела по поперечным сечениям. Объем тела вращения с помощью ОИ.

4.1.3 **Семестр – 3** Трудоёмкость 3 ЗЕТ, 180 ч., экзамен

Таблина 5

Tao.	лица Э							
			Виды учеби занятий, и трудоемкост часах)			их	Д	
№ Название темы/раздела учебной п/п дисциплины		Неделя семестра	Лекции	Практические занятия	Лабораторные занятия	Самостоятельная работа	Ссылка на ПР УД	Форма контроля
1	2	3	4	5	6	7	8	9
21.	Сходимость несобственных интегралов и числовых рядов	1-3	2	4		4	34,	По 7
22.	Степенной ряд и ряд Тейлора	4-6	2	4		4	У4, В5	Дз-7
23.	Кратные и криволинейные интегралы	7-8	2	4		4	У3, В3	АКР-2
24.	Дифференциальные уравнения 1-го порядка	9-10	3	6		4		Дз-8
25.	Свойства решений линейных ДУ. Метод Эйлера решения ЛОДУ	11-13	3	6		4	35, У4,	Д
26.	Решения линейных ДУ	14-16	3	6		4	B6	Дз-9
27.	Системы ДУ	17-18	3	6		3		4,5 /
	Итого:			36		27		ı
28.				Контроль – 27 ч.				

Дз-7 «Несобственные интегралы и ряды» выдаётся на 2 нед., сдача на 7нед., АКР-2 «Кратные и криволинейные интегралы» проводится на 8 нед., 2 часа Дз-8 «Дифференциальные уравнения» выдаётся на 8нед., сдача на 11нед., Дз-9 «Линейные ДУ. Системы ДУ» выдаётся на 12нед., сдача на 18 нед.

Содержание 3 семестра:

- 1. Несобственный интеграл 1 рода, определение и критерии его сходимости.
- 2. Несобственный интеграл II рода, определение и критерии его сходимости.
- 3. Определение числового ряда, его частичных сумм и суммы, сходимости и расходимости. Сходимость геометрической прогрессии, ее сумма.
- 4. Признаки сходимости числового ряда: необходимый, сравнения и эквивалентности, интегральный и сходимость $\sum \frac{1}{n^p}$, Даламбера и Коши.
- 5. Знакопеременный и знакочередующийся ряды. Теорема Лейбница (признак Лейбница) о сходимости знакочередующегося ряда и оценке его суммы.
- 6. Функциональный ряд, определение его области сходимости. Степенной ряд. Теорема Абеля, интервал и радиус сходимости степенного ярда.
- 7. Почленное дифференцирование и интегрирование степенного ряда, вычисление суммы степенного ряда сведением к геометрической прогрессии (или другому ряду).
- 8. Ряды Тейлора и Маклорена, их коэффициенты. Разложение в степенной ряд sin(x), cos(x), e^x , ln(1+x)и др.
- 9. Приближенные вычисления чисел e и π , вычисление определенных интегралов с помощью степенных рядов.
- 10. Выведение двойного интеграла и его основные свойства.
- 11. Вычисление двойного интеграла сведением к повторным и определённому интегралу.
- 12. Выведение криволинейных интегралов первого и второго рода, их основные свойства.
- 13. Вычисление криволинейных интегралов.
- 14. Приложение двойных и криволинейных интегралов.
- 15. Общие понятия теории обыкновенных дифференциальных уравнений (ДУ): ДУ, его решение, общее и частное решения, начальные и краевые условия, интегральная кривая, задача Коши. Теорема Коши для ДУ первого порядка.
- 16. ДУ с разделенными и разделяющимися переменными, их решения. Сведение текстовой задачи к решению ДУ на примере задачи о распаде радия и о непрерывном растворении соли (или другой задачи).
- 17. Однородные функции двух переменных. Общий вид и правило интегрирования однородных диф. уравнений. Уравнения, приводящиеся к однородным, их интегрирование.
- 18. Линейные ДУ первого порядка, методы Бернулли и Лагранжа для их интегрирования.
- 19. Уравнение Бернулли, его интегрирование непосредственно и сведением к линейному ДУ.
- 20. Уравнение в полных дифференциалах: общий вид, правило интегрирования и физический смысл (потенциальность плоского векторного поля).

- 21. Методы Эйлера и изоклин приближенного построения интегральных кривых.
- 22. Решение ДУ в виде степенного ряда, два способа нахождения его коэффициентов;
- 23. ДУ второго порядка. Случаи ДУ, допускающих понижение порядка.
- 24. Линейное ДУ второго порядка: общий вид, свойства решений, структура общего решения.
- 25. Линейная зависимость системы функций. Определитель Вронского. Теорема о связи определителя Вронского с линейной зависимостью решений линейного однородного ДУ. Фундаментальная система решений и общее решение при этом.
- 26. Линейное однородное ДУ с постоянными коэффициентами: общий вид, метод Эйлера его решения, характеристическое уравнение. Общее решение линейного ДУ при известных корнях характеристического уравнения:
 - а) корни действительные, различные;
 - б) корни кратные;
 - в) корни комплексные, сопряженные.
- 27. Нахождение частного решения линейного неоднородного ДУ при неоднородности специального вида (метод подбора):
 - а) $P_n(x)$; б) $P_n(x) e^{ax}$; в) e^{ax} . (Acos(bx) + Bsin(bx)); г) Сумма функций. Нахождение коэффициентов предполагаемого решения.
- 28. Нахождение частного решения линейного неоднородного ДУ методом вариации постоянных.
- 29. ДУ, описывающее механические колебания. Случаи свободных, затухающих, вынужденных колебаний. Случай резонанса.
- 30. Каноническая и нормальная формы системы ДУ. Решение системы ДУ, общее и частное решения. Начальные условия. Теорема о существовании и единственности решения системы ДУ.
- 31. Сведение ДУ к системе ДУ в нормальной форме, системы ДУ к одному дифференциальному уравнению (метод исключения).
- 32. Системы линейных уравнений, свойства решений однородных систем и неоднородных систем ДУ. Определитель Вронского системы ДУ, его свойства. ФСР системы ЛОДУ.
- 33. Нахождение решений линейной однородной системы методом исключения.
- 34. Нахождение решений линейной однородной системы с помощью собственных векторов.
- 35. Нахождение решений линейной неоднородной однородной системы методом вариации постоянных.

5. Информационно-образовательные технологии

В ходе изучения каждого раздела дисциплины сначала преподаватель в виде монолога излагает лекцию по новой теме, после чего переходит к разбору типовых задач в интерактивной форме с участием студентов. Для закрепления изученного материала студент выполняет соответствующее домашнее задание (Дз), см. Таблицы 3-5 из п.4. При его выполнении рекомендуется применять как конспект лекций, так и учебно-методические материалы из приведённого в п.7 списка, сеть Интернет.

Во втором и третьем семестрах проводится по одной самостоятельной работе (АКР) продолжительностью по 2 академических часа.

В течение семестра проводятся консультации, где преподаватель при личном общении помогает студенту освоить сложные для него темы, метод решения заданных задач.

В конце семестра преподаватель подводит итог и по набранным баллам допускает либо нет студента до экзамена. Средства для контроля и оценки указаны в п.б.

Учебная дисциплина обеспечена учебно-методической документацией и материалами. Её содержание представлено в локальной сети учебного заведения и находится в режиме свободного доступа для студентов. Доступ студентов для самостоятельной подготовки осуществляется через компьютеры дисплейного класса (в стандартной комплектации).

Сборник домашних заданий приведён в **Приложении 1.** «**Фонд оценочных средств**». Студенту задания выдаются в электронном виде, вариантом является номер студента в списке группы.

6. Оценочные средства для текущего контроля успеваемости и учебно-методическое обеспечение самостоятельной работы студентов

Для оценки достижений студента используется балльно-рейтинговая система:

- В каждом семестре студент должен выполнить домашние контрольные работы, во втором и третьем ещё по одной АКР. Выполнение контрольных работ оценивается в баллах (см. п. 1.9 ФОС дисциплины);
- Посещаемость и активность на аудиторных занятиях (АР) за семестр может принести студенту ещё дополнительные баллы;
- Допуском до экзамена является 30 баллов при засчитанной *каждой* контрольной работе. При меньшем количестве баллов студент перед экзаменом выполняет дополнительные задания для получения допуска;
- Полное и верное выполнение заданий экзаменационного билета (ответ на теоретические вопросы и решение задач) и верные ответы на дополнительные вопросы оценивается в 60 баллов. На выполнение заданий даётся 2 часа. При неверном или неполном ответе баллы пропорционально снижаются. Экзамен сдан при наборе не менее 30 баллов;
- Оценкой за семестр является общий суммарный рейтинг в виде суммы накопленных в семестре и полученных на экзамене баллов. Оценка выставляется при наборе не менее 60 баллов с указанием этой суммы и соответствующей оценки, см. таблицу ниже.

Оценка по 5 бальной шкале	Зачет	Сумма баллов по дисциплине	Оценка (ECTS)	Градация
5 (отлично)		90-100	A	Отлично
		85-89	В	Очень хорошо
4 (хорошо)	Зачтено	75-84	C	Хорошо
		70-74	D	Удовлетворительно
2 ()		65-69		
3 (удовлетворительно)		60-64	E	Посредственно
2 (Не	Ниже 60	${f F}$	Неудовлетворительно
2 (неудовлетворительно)	зачтено			•

Сборник заданий Дз, примеры заданий АКР, вопросы экзамена и примеры экзаменационных билетов по каждому семестру содержатся в ФОС данной дисциплины.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

7.1 Основная литература:

1. **517(075)Ш 63**

Шипачев, В. С.

Высшая математика: учеб. пособие для бакалавров / В. С. Шипачев. - 8-е изд., перераб. и доп. - М.: Юрайт, **2012**. - 447 с. - (Бакалавр, Базовый курс). - Рек. М-вом образования и науки РФ. - ISBN 978-5-9916-2031-4: 316-91.

Кол-во экземпляров: всего - 10

2. **517(075)**Б 74

Богомолов Н. В. Математика : учеб.для бакалавров / Н. В. Богомолов, П. И. Самойленко. - 5-е изд., перераб. и доп. - М. : Юрайт, **2013**. - 396 с. - (Бакалавр, Базовый курс). - Допущено М-вом образования и науки РФ. - ISBN 978-5-9916-2568-5 : 336-55.

Кол-во экземпляров: всего -15

- 3. **Фролов С.В.** Высшая математика [Электронный ресурс]: учеб. пособие/ Фролов С.В., Багаутдинова А.Ш.— [Электрон. текстовые данные]— СПб.: ГИОРД, **2012**.— 616 с.— Режим доступа: ЭБС «IPRbooks», по паролю
- 4. **Туганбаев А. А.** Основы высшей математики : учеб.пособие для ВПО/А. А. Туганбаев. 1-е изд. [Электронный ресурс] СПб. : Лань, **2011**. 491 с. Режим доступа «ЭБС ЛАНЬ»

7.2 Дополнительная литература:

5. 51(075)A 72

Антонов В. И. Элементарная математика для первокурсника : учеб.пособие / В. И. Антонов, Ф. И. Копелевич. - СПб. : Лань, 2013. - 112 с. : ил. - (Учебники для вузов, Специальная литература). - Библиогр.: с. 99.

- ISBN 978-5-8114-1413-0 : 267-52.

Кол-во экземпляров: всего -15.

6. 517 (075) Б 90

Бугров Я. С. Элементы линейной алгебры и аналитической геометрии : [учеб.пособие : в 3 т.] / Я. С. Бугров, С. М. Никольский ; под ред. В. А. Садовничего. - 6-е изд., стер. - М. : Дрофа, 2004. - 288 с. : ил. - (Высшее образование, Современный учебник). - Предм. указ.: с. 282. - Рек. М-вом образования РФ для вузов. - ISBN 5-7107-8421-4 (т. 1) : 123-75. - ISBN 5-7107-8420-6. Кол-во экземпляров: всего — 25

7. 517(075) Б 50

Бермант А. Ф. Краткий курс математического анализа: учеб.для вузов / А. Ф. Бермант, И. Г. Араманович. - 10-е изд., стер. - СПб.; М.; Краснодар: Лань, 2003. - 736 с. - (Учебники для вузов, Специальная литература). - Библиогр.: с. 736. - ISBN 5-8114-0499-9: 280-00.

Кол-во экземпляров: всего – 30

8. 517(075) Д 17

Данко П. Е. Высшая математика в упражнениях и задачах : учеб.пособие для вузов : в 2 ч. Ч. 2 / П. Е. Данко, А. Г. Попов, Т. Я. Кожевникова. - 6-е изд. - М. : Оникс 21 век : Мир и Образование, 2003. - 416 с. : ил. - С решениями. - ISBN 5-329-00528-0 : 72-00. - ISBN 5-94666-009-8 : 65-00. - ISBN 5-329-00327-X.

Кол-во экземпляров: всего – 52

9. 517 3-17

Зайцев И. А. Высшая математика : [учеб.пособие] / И. А. Зайцев. - 4-е изд., стер. - М. : Дрофа, 2005. - 398 с. : ил. - (Высшее образование). - Библиогр.: с. 392. - Рек. М-вом образования РФ для с.-х. вузов. - ISBN 5-7107-9071-0 : 146-85. Кол-во экземпляров: всего - 25

7.3 Методическое обеспечение

- 1. Орлов Ю.В. «Линейная алгебра и аналитическая геометрия» учебное пособие часть 1 «Матричное исчисление. Решение систем линейных уравнений» 64 с. часть 2 «Векторное исчисление» 72 с. Новоуральск, изд. НТИ НИЯУ МИФИ 2013.
- 2. Орлов Ю.В. Производная функции одной переменной Учебно методическое пособие Новоуральск, НПИ МИФИ 2001.
- 3. Орлов Ю.В. «Интегрирование». Учебно справочное пособие по курсу «ВЫСШАЯ МАТЕМАТИКА» для студентов всех специальностей заочной формы обучения. Новоуральск, изд. НТИ НИЯУ МИФИ 2013—32 с.
- 4. Орлов Ю.В. «РЯДЫ. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» Учебно справочное пособие по курсу «ВЫСШАЯ МАТЕМАТИКА» для студентов всех специальностей заочной формы обучения Новоуральск, изд. НТИ НИЯУ МИФИ 2014. 40 с.

7.4 Информационное обеспечение (включая перечень ресурсов информационно-телекоммуникационной сети «Интернет»)

- 1 http://nsti.ru
- 2 научная библиотека e-librari
- 3 ЭБС «Лань»
- 4 ЭБС «IPRbooks»

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Учебная дисциплина обеспечена учебно-методической документацией и материалами. Её содержание представлено в локальной сети учебного заведения и находится в режиме свободного доступа для студентов. Доступ студентов для самостоятельной подготовки осуществляется через компьютеры дисплейного класса (в стандартной комплектации).

Домашние задания выдаются в электронном виде, студенту необходим либо личный компьютер либо доступ в компьютерный класс института.

Программа составлена в соответствии с требованиями ФГОС-3++ с учетом рекомендаций и ПрООП ВО по направлению подготовки 11.03.04_ 62 «Электроника и наноэлектроника».

Рабочая программа учебной дисциплины

" Математика"

(первый – третий семестры)

Направление подготовки – 11.03.04 62 «Электроника и наноэлектроника» Профиль – «Промышленная электроника» Квалификация (степень) – бакалавр выпускника Форма обучения – Очная – Новоуральск, изд. НТИ НИЯУ МИФИ, 2021. – 22 с. Учебную программу составил заведующий кафедрой физикоматематических дисциплин НТИ НИЯУ МИФИ к.ф.-м.н., доцент Носырев Николай Анатольевич Макет подготовлен на кафедре физико-математических дисциплин НТИ НИЯУ МИФИ

Формат А4 Подписано в печать Гарнитура Печать плоская. Усл-печ. л. Тираж экз. Заказ Издательство Новоуральского технологического института НИЯУ МИФИ, 624130, г. Новоуральск, ул. Ленина 85, НТИ НИЯУ МИФИ