МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский ядерный университет «МИФИ»

Новоуральский технологический институт

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(НТИ НИЯУ МИФИ) Колледж НТИ

Цикловая методическая комиссия информационных технологий

ОДОБРЕНО

Учёным Советом НТИ НИЯУ МИФИ Протокол № 2 от 05 февраля 2024 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ ОП.10 «ЧИСЛЕННЫЕ МЕТОДЫ»

для студентов колледжа НТИ НИЯУ МИФИ, обучающихся по программе среднего профессионального образования

специальность 09.02.07 «Информационные системы и программирование»

очная форма обучения на базе основного общего образования

> квалификация программист

ОДОБРЕНО:

на заседании

цикловой методической комиссии

информационных технологий

Протокол № 2 от 02.02.2024 г.

Председатель ЦМК ИТ

____ И.И. Горницкая

Составлен в соответствии с рабочей программой учебной дисциплины ОП.10 «Численные методы» по специальности 09.02.07 Информационные системы и программирование

Фонд оценочных средств по учебной дисциплине ОП.10 «Численные методы» — Новоуральск: Изд-во колледжа НТИ НИЯУ МИФИ, 2024. — 14c.

КИЦАТОННА

Фонд оценочных средств предназначен для текущего контроля и промежуточной аттестации обучающихся ПО специальности 09.02.07 Информационные И программирование системы на соответствие персональных достижений поэтапным требованиям программы подготовки специалистов среднего звена по учебной дисциплине ОП.10 «Численные методы». Комплектация фонда оценочных средств: паспорт, программа оценивания, оценочные средства для текущего контроля и промежуточной аттестации по учебной дисциплине, критерии оценивания. В паспорте фонда оценочных средств указаны: место учебной дисциплины в структуре программы подготовки специалистов среднего звена, требования ФГОС СПО к результатам освоения учебной дисциплины, перечень формируемых компетенций, компоненты фонда оценочных средств

Разработчик: Тарасова А.В.,

преподаватель ЦМК информационных технологий

Редактор: Тарасова А.В.

СОДЕРЖАНИЕ

ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ ОП.10 «ЧИСЛЕННЫЕ МЕТОДЫ»4
ПРОГРАММА ОЦЕНИВАНИЯ6
ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ7
Практические работы7
Практическая работа 17
Практическая работа 2 8
Практическая работа 3 8
Практическая работа 49
Практическая работа 5 10
Практическая работа 6 10
Критерии оценивания выполнения заданий практических работ 11
ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ12
Перечень вопросов для проведения дифференцированного зачета 12
Критерии оценивания знаний обучающихся на дифференцированном зачете13

ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ ОП.10 «ЧИСЛЕННЫЕ МЕТОДЫ»

Фонд оценочных средств является составной частью учебнометодических документов, обеспечивающих реализацию основной профессиональной образовательной программы СПО по специальности 09.02.07 Информационные системы и программирование.

Фонд оценочных средств предназначен для проверки результатов освоения учебной дисциплины ОП.10 «Численные методы».

Место дисциплины в структуре основной профессиональной образовательной программы: учебная дисциплина ОП.10 «Численные методы» принадлежит к общепрофессиональному циклу.

Цель и планируемые результаты освоения дисциплины:

Код ПК, ОК	Умения	Знания
OК 01, OK 02, OK 04, OK 05, OK 09, ПК 1.1, ПК 1.2, ПК 1.5	Использовать основные численные методы решения математических задач. Выбирать оптимальный численный метод для решения поставленной задачи. Давать математические характеристики точности исходной информации и оценивать точность полученного численного решения. Разрабатывать алгоритмы и программы для решения вычислительных задач, учитывая необходимую точность получаемого результата.	Методы хранения чисел в памяти электронновычислительной машины (далее – ЭВМ) и действия над ними, оценку точности вычислений. Методы решения основных математических задач — интегрирования, дифференцирования, решения линейных и трансцендентных уравнений и систем уравнений с помощью ЭВМ.

Перечень формируемых компетенций в соответствии с требованиями ФГОС СПО:

Общие компетенции (ОК):

- ОК 01. Выбирать способы решения задач профессиональной деятельности, применительно к различным контекстам.
- ОК 02. Использовать современные средства поиска, анализа и интерпретации информации и информационные технологии для выполнения задач профессиональной деятельности.
- ОК 04 Эффективно взаимодействовать и работать в коллективе и команде.
- ОК 05. Осуществлять устную и письменную коммуникацию на государственном языке Российской Федерации с учетом особенностей социального и культурного контекста.
- ОК 09. Пользоваться профессиональной документацией на государственном и иностранном языках.

Профессиональные компетенции (ПК):

- ПК 1.1. Формировать алгоритмы разработки программных модулей в соответствии с техническим заданием.
- ПК 1.2. Разрабатывать программные модули в соответствии с техническим заданием.
 - ПК 1.5 Осуществлять рефакторинг и оптимизацию программного кода.

Фонд оценочных средств по учебной дисциплине ОП.10 «Численные методы» включает оценочные средства для текущего контроля и оценочные средства для проведения промежуточной аттестации.

ПРОГРАММА ОЦЕНИВАНИЯ

№ п/п	Контролируемые разделы, темы учебной дисциплины	Контролируемые компетенции (или их части)	Вид оценивания
1	2	3	4
1	Тема 1 Элементы теории погрешностей	OK 1, OK 2, OK 4, OK 5, OK 9, ПК 1.1, ПК 1.2, ПК 1.5	Практическая работа 1
2	Тема 2 Приближённые решения алгебраических и трансцендентных уравнений	OK 1, OK 2, OK 4, OK 5, OK 9, ПК 1.1, ПК 1.2, ПК 1.5	Практическая работа 2
3	Тема 3 Решение систем линейных алгебраических	OK 1, OK 2, OK 4, OK 5, OK 9, ПК 1.1, ПК 1.2, ПК 1.5	Практическая работа 3
4	Тема 4 Интерполирование и экстраполирование функций	OK 1, OK 2, OK 4, OK 5, OK 9, ПК 1.1, ПК 1.2, ПК 1.5	Практическая работа 4
5	Тема 5 Численное интегрирование	OK 1, OK 2, OK 4, OK 5, OK 9, ПК 1.1, ПК 1.2, ПК 1.5	Практическая работа 5
6	Тема 6 Численное решение обыкновенных дифференциальных уравнений	OK 1, OK 2, OK 4, OK 5, OK 9, ПК 1.1, ПК 1.2, ПК 1.5	Практическая работа б
7	Промежуточная аттестация по учебной дисциплине	IV семестр промежуточная аттестация в форме дифференцированного зачета (зачет с оценкой)	

ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ

Практические работы

Практическая работа 1

Вариант 1

- 1. Определить какое из равенств $\frac{7}{3}$ = 2,33; $\sqrt{42}$ = 6,48 точнее.
- 2. Округлить сомнительные цифры числа 3,4852 ± 0,0047, оставив верные знаки:
- а) в узком смысле;
- б) в широком смысле.

Определить предельные абсолютную и относительную погрешности результата.

- Найти предельные абсолютную и относительную погрешности числа 245,67, если он имеет только верные цифры: 1) в узком смысле; 2) в широком смысле.
- 4. Вычислить и определить предельные абсолютную и относительную погрешности результата. Исходное выражение, $X = \frac{m \cdot [a-b]^2}{c^3}$, где $a=5,14\pm0,005$, $b=2,44\pm0,006$, $c=7,2\pm0,07$, $m=7,8\pm0,05$.
- 5. Вычислить и определить предельные абсолютную и относительную погрешности результата, пользуясь общей формулой погрешности: 1) в узком смысле; 2) в широком смысле. Исходное выражение, $X = \frac{\lg m \cdot \sqrt{a + \sqrt{b}}}{\left(c a\right)^2}$, где $a = 5,14 \pm 0,005$, $b = 2,44 \pm 0,006$, $c = 7,2 \pm 0,07$, $m = 7,8 \pm 0,05$.

Вариант 2

- 1. Определить какое из равенств $2\frac{1}{29} = 0,724$; $\sqrt{83} = 9,11$ точнее.
- 2. Округлить сомнительные цифры числа 0,48652 ± 0,0089, оставив верные знаки:
- а) в узком смысле;
- б) в широком смысле.

Определить предельные абсолютную и относительную погрешности результата.

- Найти предельные абсолютную и относительную погрешности числа 2,6087, если он имеет только верные цифры: 1) в узком смысле; 2) в широком смысле.
- 4. Вычислить и определить предельные абсолютную и относительную погрешности результата. Исходное выражение, $X = \frac{m \cdot [a+b]^2}{\sqrt[3]{c^2}}$, где $a=3,85\pm0,01$, $b=20,18\pm0,002$, $c=2,04\pm0,01$, $m=7,2\pm0,07$.
- 5. Вычислить и определить предельные абсолютную и относительную погрешности результата, пользуясь общей формулой погрешности: 1) в узком смысле; 2) в широком смысле. Исходное выражение, $X = \frac{m \cdot [a+b]^2}{\sqrt[3]{c^2}}$, где $a = 3.85 \pm 0.01$, $b = 20.18 \pm 0.002$, $c = 2.04 \pm 0.01$, $m = 7.2 \pm 0.07$.

Практическая работа 2

Вариант 1

- 1. Сформулировать алгоритм нахождения корней нелинейных уравнений:
- а) методом касательных;
- b) методом хорд;
- с) комбинированным методом хорд и касательных.
- 2. Найти корень нелинейного уравнения $x^3 x 0.2 = 0$ с помощью MS Excel:
- а) методом касательных;
- b) методом хорд;
- с) комбинированным методом хорд и касательных.
- 3. Написать программу, находящую корни нелинейного уравнения, на языке PascalABC:
- а) методом касательных;
- b) методом хорд;
- с) комбинированным методом хорд и касательных.

Вариант 2

- 1. Сформулировать алгоритм нахождения корней нелинейных уравнений:
- а) методом касательных;
- b) методом хорд;
- с) комбинированным методом хорд и касательных.
- 2. Найти корень нелинейного уравнения $x^3 x 0.2 = 0$ с помощью MS Excel:
- а) методом касательных;
- b) методом хорд;
- с) комбинированным методом хорд и касательных.
- Написать программу, находящую корни нелинейного уравнения, на языке PascalABC:
- а) методом касательных;
- b) методом хорд;
- с) комбинированным методом хорд и касательных.

Практическая работа 3

Вариант 1

- Сформулировать алгоритм нахождения корней системы линейных уравнений:
 - а) методом Гаусса;
 - b) методом простой итерации.
- 2. Найти корни системы линейных уравнений

$$\begin{cases} x_1 - 5x_2 + 2x_3 = 1; \\ x_1 - 2x_2 + x_3 = 2; \\ 1, 1x_1 - x_2 - 0, 5x_3 = 0, 2. \end{cases}$$

с помощью MSExcel:

- а) методом Гаусса;
- b) методом простой итерации.
- 3. Написать программу, находящую корни системы линейных уравнений, на языке PascalABC:
 - 1. методом Гаусса;
 - 2. методом простой итерации.

Вариант 2

- 1. Сформулировать алгоритм нахождения корней системы линейных уравнений:
 - а) методом Гаусса;
 - b) методом простой итерации.
- 2. Найти корни системы линейных уравнений

$$\begin{cases} 2x_1 - 4x_2 + 1, 4x_3 = -0, 6; \\ x_1 + x_2 - 3x_3 = 2; \\ 2, 1x_1 - x_2 - 2x_3 = 2, 3. \end{cases}$$

с помощью MSExcel:

- а) методом Гаусса;
- b) методом простой итерации.
- 3. Написать программу, находящую корни системы линейных уравнений, на языке PascalABC:
 - а) методом Гаусса;
 - b) методом простой итерации.

Практическая работа 4

Вариант 1

- 1. Сформулировать алгоритм интерполирования функций интерполяционным многочленом Лагранжа.
- 2. Для функции, заданной таблицей:

x	0,2143	0,2572	0,3269	0,4282	0,5657
f(x)	4,3002	4,2037	4,0830	3,9946	4,0603

- а) составьте интерполяционный многочлен Лагранжа. Произведите проверку полученного результата, вычислив и сопоставив узловые значения функции;
- вычислите значения этой функции в точке 0,25, используя программу Excel.
- 3. Составьте программу, вычисляющую значения функции с помощью интерполяционной формулы Лагранжа на языке PascalABC.

Вариант 2

- 1. Сформулировать алгоритм интерполирования функций:
- а) первой интерполяционной формулой Ньютона;
- второй интерполяционной формулой Ньютона.
- 2. Для функции, заданной таблицей:

x	2	2,14	2,28	2,42	2,56
f(x)	1,1293	1,2814	1,4407	1,6066	1,7784

- а) составьте первую и вторую интерполяционные формулы Ньютона. Произведите проверку полученного результата, вычислив и сопоставив узловые значения функции;
- b) вычислите значения этой функции в точках 2,09 и 2,45, используя программу Excel.
- 3. На языке PascalABC составьте программу субтабулирования:
- а) по первой интерполяционной формуле Ньютона;
- b) по второй интерполяционной формуле Ньютона на языке PascalABC.

Практическая работа 5

Вариант 1

- 1. Сформулировать алгоритм нахождения приближенного значения интеграла:
- а) по формуле левых прямоугольников;
- b) по формуле правых прямоугольников;
- с) по формуле средних прямоугольников.
- 2. Найти приближенное значение интеграла $I = \int_{0.3}^{0.8} f(x) dx$, где $f(x) = \frac{\cos(x)}{x}$:
- а) по формуле левых прямоугольников с точностью $\varepsilon = 10^{-3}$;
- b) по формуле правых прямоугольников с точностью $\varepsilon = 10^{-3}$;
- c) по формуле средних прямоугольников с точностью $\varepsilon = 10^{-3}$
- 3. Составьте программу интегрирования на языке PascalABC:
- а) по формуле левых прямоугольников;
- b) по формуле правых прямоугольников;
- с) по формуле средних прямоугольников.

Вариант 2

- 1. Сформулировать алгоритм нахождения приближенного значения интеграла:
- а) по формуле трапеций;
- b) по формуле Симпсона.
- 2. Найти приближенное значение интеграла $I = \int_{0.3}^{0.8} f(x) dx$, где $f(x) = \frac{\cos(x)}{x}$:
- а) по формуле трапеций с точностью $\varepsilon = 10^{-3}$;
- b) по формуле Симпсона с точностью $\varepsilon = 10^{-3}$.
- 3. Составьте программу интегрирования на языке PascalABC:
- а) по формуле трапеций;
- b) по формуле Симпсона.

Практическая работа 6

Вариант 1

- 1. Сформулировать алгоритм решения обыкновенного дифференциального уравнения:
- b) методом Эйлера;
- с) усовершенствованным методом ломаных;
- d) методом Эйлера-Коши.
- 2. Найти с помощью программы Excel приближенные значения решения обыкновенного дифференциального уравнения (ОДУ) $y' \frac{y}{1-x^2} = x+1$ на отрезке $x \in [0;1,5]$ с шагом h=0,1 при начальном условии y(0) = 1, используя
- а) метод Эйлера;
- усовершенствованный метод ломаных;
- с) метод Эйлера-Коши.
- 3. Написать программу решения обыкновенного дифференциального уравнения на языке PascalABC, используя:
- 1. метод Эйлера;
- 2. усовершенствованный метод ломаных;
- 3. метод Эйлера-Коши.

Вариант 2

- 1. Сформулировать алгоритм решения обыкновенного дифференциального уравнения:
- а) методом Эйлера с уточнением;
- b) методом Рунге-Кутта четвертого порядка.
- 2. Найти с помощью программы Excel приближенные значения решения обыкновенного дифференциального уравнения (ОДУ) $y' \frac{y}{1-x^2} = x+1$ на отрезке $x \in [0;1,5]$ с шагом h=0,1 при начальном условии y(0) = 1, используя:
- а) метод Эйлера с уточнением;
- b) метод Рунге-Кутта четвертого порядка.
- 3. Написать программу решения обыкновенного дифференциального уравнения на языке PascalABC, используя:
- а) метод Эйлера с уточнением;
- b) метод Рунге-Кутта четвертого порядка.

Критерии оценивания выполнения заданий практических работ

Оценка «ОТЛИЧНО» – задание выполнено в полном объеме, даны правильные ответы на контрольные вопросы, сделаны логически точные выводы.

Оценка «ХОРОШО» — задание выполнено в полном объеме, даны правильные ответы на контрольные вопросы, не все выводы логически точны и правильны.

Оценка «УДОВЛЕТВОРИТЕЛЬНО» – задание выполнено в полном объеме, есть ошибки в ответах на контрольные вопросы, не все выводы правильные.

Оценка «НЕУДОВЛЕТВОРИТЕЛЬНО» – задание не выполнено, ответов нет, выводов нет.

ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Промежуточная аттестация по учебной дисциплине ОП.10 «Численные методы» проводится в IV семестре в форме дифференцированного зачёта.

Перечень вопросов для проведения дифференцированного зачета

- 1. Приближенные значения. Абсолютная и относительная погрешность. Верные и значащие цифры.
- 2. Представление чисел в ЭВМ. Вычисление погрешностей арифметических действий.
- 3. Учет погрешностей вычислений по заданной формуле. Вычисления по правилам подсчета цифр.
- 4. Вычисления со строгим учетом предельных абсолютных погрешностей.
 - 5. Вычисления по методу границ.
- 6. Отделение и уточнение корня уравнения методом половинного деления.
 - 7. Метод простой итерации для решения уравнений.
 - 8. Нахождение корня уравнения методом касательных.
 - 9. Нахождение корня уравнения методом хорд.
 - 10. Нахождение корня уравнения методом хорд и касательных.
- 11. Решение систем линейных алгебраических уравнений (СЛАУ) численными методами. Метод Гаусса.
- 12. Метод простой итерации для системы линейных алгебраических уравнений (СЛАУ).
 - 13. Интерполяционный многочлен Лагранжа.
 - 14. Первая интерполяционная формула Ньютона.
 - 15. Вторая интерполяционная формула Ньютона.
 - 16. Экстраполирование функций.

- 17. Численное интегрирование. Квадратурные формулы Ньютона-Котеса.
 - 18. Численное интегрирование. Формулы трапеций.
 - 19. Численное интегрирование. Формула Симпсона.
- 20. Численные методы решения обыкновенных дифференциальных уравнений. Метод Эйлера.
- 21. Численные методы решения обыкновенных дифференциальных уравнений. Метод Рунге-Кутта.
 - 22. Численное решение задач оптимизации.
 - 23. Поиск минимума функции одной переменной.
 - 24. Поиск минимума функции многих переменных.

Критерии оценивания знаний обучающихся на дифференцированном зачете

Оценка «ОТЛИЧНО»

Представлен развернутый ответ на теоретический вопрос, а также поэтапное решение практического задания с пояснениями. Обучающийся ориентируется в излагаемом материале, отвечает на дополнительные вопросы, демонстрирует глубокие теоретические знания, знание первоисточников.

Оценка «ХОРОШО»

Представлен достаточно развернутый ответ на теоретический вопрос, а также поэтапное решение практического задания с пояснениями. В решении практического задании могут быть допущены вычислительные ошибки, не искажающие лежащего в основе решения алгоритма. Обучающийся уверенно отвечает на дополнительные вопросы, демонстрирует достаточно высокий уровень теоретических знаний, знание первоисточников.

Оценка «УДОВЛЕТВОРИТЕЛЬНО»

Представлен неполный ответ на теоретический вопрос. В решении практического задания могут быть допущены вычислительные ошибки, не искажающие лежащего в основе решения алгоритма. Обучающийся демонстрирует достаточный уровень теоретических знаний, однако затрудняется отвечать на отдельные вопросы.

Оценка «НЕУДОВЛЕТВОРИТЕЛЬНО»

Теоретический вопрос не раскрыт, в решении практического задания допущены существенные ошибки, ввиду незнания алгоритмов решения. Либо дан ответ только на один из вопросов билета. Обучающийся затрудняется отвечать на дополнительные вопросы, в том числе непосредственно относящиеся к сути теоретического и практического вопросов билета.